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Abstract DFT (B3LYP and M06L) as well as ab initio
(MP2) methods with Dunning cc-pVnZ (n=2,3) basis sets
are employed for the study of the binding ability of the new
class of protease inhibitors, i.e., silanediols, in comparison
to the well-known and well-studied class of inhibitors with
hydroxamic functionality (HAM). Active sites of metallo-
proteases are modeled by [R3M-OH2]

2+ complexes, where
R stands for ammonia or imidazole molecules and M is a
divalent cation, namely zinc, iron or nickel (in their different
spin states). The inhibiting activity is estimated by calculat-
ing Gibbs free energies of the water displacement by metal
binding groups (MBGs) according to: [R3M-OH2]

2+ +
MBG → [R3M-MBG]2+ + H2O. The binding energy of
silanediol is only a few kcal mol−1 inferior to that of HAM
for zinc and iron complexes and is even slightly higher for
the triplet state of the (NH3)3Ni

2+ complex. For both MBGs
studied in the ammonia model the binding ability is nearly
the same, i.e., Fe2+(t) > Ni2+(t) > Fe2+(q) > Ni2+(s) > Zn2+.
However, for the imidazole model the order is slightly
different, i.e., Ni2+(t) > Fe2+(t) > Fe2+(q) > Ni2+(s) ≥ Zn2+.
Equilibrium structures of the R3Zn

2+ complexes with both
HAM and silanediol are characterized by the monodentate
binding, but the bidentate character of binding increases on
going to iron and nickel complexes. Two types of intermedi-
ates of the water displacement reactions for [(NH3)3M-
OH2]

2+ complexes were found which differ by the direction
of the attack of the MBG. Hexacoordinated complexes

exhibit bidentate bonding of MBGs and are lower in energy
for M=Ni and Fe. For Zn penta- and hexacoordinated com-
plexes have nearly the same energy. Intermediate complexes
with imidazole ligands have only octahedral structures with
bidentate bonding of both HAM and dimethylsilanediol
molecules.

Keywords ab initio . Binding energy . DFT .Metal binding
groups . Metalloproteases inhibitors . Silanediol
functionality

Introduction

Metalloproteases are enzymes which play a crucial role in
the catalysis of a vast number of physiological processes
including numerous human diseases such as cancer and
hypertension. The effective inhibiting of these processes is
one of the main goals in drug design. The active catalytic
site of metalloproteases is a M2+ cation incorporated in
enzymes [1–4]. The metal ion as a catalytic enzyme site is
tetrahedrally coordinated by three amino acids (most fre-
quently by histidine) and an exchangeable water molecule
[1–10]. The mechanism of the catalytic activity of proteases
still remains controversial [3, 11–14] but one of the plausi-
ble ways of metal site catalytic activity is the interaction
with substrate which may proceed when the coordinated
water molecule is displaced to allow the access of the
substrate to the metal center [15]. Replacement of this water
molecule by the metal binding group (MBG) inhibits the
catalytic activity of the enzyme.

Thus, the ability of a MBG to displace a water molecule
characterizes the inhibiting properties of this group.
Computational models for the estimation of the strength of
interaction between the binding group and a metal cation
incorporated into enzymes may be very useful for the design
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of drugs acting as inhibitors of enzymes. Due to the crucial
role of zinc in the activity of enzymes [3], the majority of
studies have been focused on the search of the potent zinc
binding groups (ZBG). However, many potent inhibitors
failed clinically because they bind stronger to metals other
than zinc [16] therefore the selectivity of the binding group
toward zinc is a desirable property of the drug candidate.

One the most important examples from the standpoint of
clinical use has been the inhibition of angiotensin-
converting enzyme (ACE). Inhibition of this enzyme is a

classic medicinal chemistry approach to the treatment of
hypertension [17, 18]. Numerous molecules, most of which
contain metal chelators with carboxylic, amide or hydrox-
amate functionalities were used as ACE inhibitors [19–21].
During the last 15 years, new effective inhibitors with gem-
inal silanediol functionality were proposed by the group of
Prof. Sieburth [22–26].

There are several works in which the interaction of chelators
with metal ions of enzymes are studied by quantum chemical
methods [27–46]. Since the theoretical treatment of real

Fig. 1 Equilibrium structures
(bond lengths in Å) of
metalloprotease active site
models with ammonia ligands
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enzyme structures is out of the reach for the state-of-the-art
computational DFTand ab initiomethods, in the computation-
al models amino acid residues in enzymes are mimicked using
nitrogen containing molecules such as ammonia or imidazole
rings. Most of these studies deal with molecules with hydrox-
amate functionality as most widely used and potent metal
binding group [43–45]. However, Šramko, Garaj, and
Remko [35] used the ONIOM approach (combined B3LYP-
MNDO methods) for the study of the interaction between 29
neutral and deprotonated enzyme inhibitors (including silane-
diol) and zinc cation with three first-shell ligands as models of
active site of angiotensin-converting enzyme.

Dobbs et al. [36] predicted structures of complexes
between the model of peptide deformylase, consisting of

a metal dication (iron-(II), cobalt (II), nickel(II), or zinc
(II)) wrapped in a tridentate spectator ligand 2-methyl-1-
([methyl-(2-pyridin-2-ylethyl)-amino] propane-2-thiolate
(PATH), and various metal binding groups. The study
was carried out using theoretical methods of higher
level (B3LYP/DGDZVP single-point energies on BP86/
DGDZVP optimized structures) and for iron, nickel and
cobalt the structure of complexes in different spin states
was revealed. However, silanediols were not included in
the list of inhibitors.

Here we present the results of the optimization at the DFT
levels (B3LYP and M06L) of complexes between the enzyme
models (tridentate amino acid residues with an exchangeable
water molecule) and dimethylsilanediol (as a relatively

Fig. 2 Equilibrium structures (bond lengths in Å) of metalloproteases active site models with imidazole ligands
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simple model of an inhibitor containing the silanediol
functionality). These complexes are compared with anal-
ogous complexes with N-acetylhydroxylamine as one of
the most potent inhibitor with hydroxamic functionality.

Computational methods

Geometries of stationary points have been fully optimized
and characterized by harmonic vibrational frequency calcu-
lations using the B3LYP [47, 48] and M06L [49] density
functional methods. The latter functional was reported to
have the best overall performance of any functional (includ-
ing the popular B3LYP) for the study of organometallic
thermochemistry and noncovalent interactions [50–54].
For smaller systems, in which amino acid residues were
modeled by ammonia molecules, second-order Moller-
Plesset perturbation theory (MP2) with the frozen core ap-
proximation [55] was also used. In order to account for long
range dispersion forces, DFT-D3 [56] program has been
used to correct the calculated energies (B3LYP/cc-pVTZ)
in larger systems. The Dunning correlation-consistent sets
[57] were employed. All the methods and basis sets were
used as implemented in the Gaussian09 program [58]. In the
DFT methods the integration was carried out with the
Int=Ultrafine option and, for all the methods employed,

Table 1 ZPVE corrected energy difference (ΔH0) between the high
and low spin states of the enzyme active site models [R3M-OH2]

2+

(R=NH3, C3N2H4; M=Fe, Ni)

M B3LYP M06L MP2

cc-pVDZ cc-pVTZ cc-pVDZ cc-pVTZ cc-pVDZ

R=NH3

Fe −23.2 −22.2 −28.1 −26.5 −48.3

Ni −8.0 −6.4 −7.2 −5.6 −21.3

R=C3N2H4

Fe −19.3 −18.5 −21.8 −20.4 —

Ni −3.5 −2.4 −3.6 −2.2 —

Table 2 Gibbs free energies (ΔG298) of the reaction [R3M-OH2]
2+ + MBG → [R3M-MBG]2+ + H2O

MBG spin state B3LYP M06L MP2

cc-pVDZ cc-pVTZ cc-pVDZDFT-D3 corrected cc-pVDZ cc-pVTZ cc-pVDZ

R=NH3 M=Zn

HAM singlet −20.8 −22.9 — −22.5 −24.5 −22.1

DMSD singlet −15.7 −14.8 — −20.6 −19.3 −18.7

M=Fe

HAM triplet −26.5 −27.7 — −30.7 −29.5 −30.8

DMSD triplet −22.8 −19.8 — −29.9 −33.7 −32.4

HAM quintet −24.6 −26.1 — −27.4 −28.4 −25.6

DMSD quintet −20.7 −17.8 — −26.5 −23.6 −24.5

M=Ni

HAM singlet −24.6 −25.4 — −28.3 −28.1 −26.6

DMSD singlet −18.9 −17.1 — −23.1 −21.3 −21.5

HAM triplet −26.1 −26.5 — −29.4 −31.7 −28.1

DMSD triplet −25.9 −23.0 — −31.8 −28.5 −29.2

R=C3N2H4 M=Zn

HAM singlet −10.8 −11.6 −16.9 −15.4 −15.0 —

DMSD singlet −6.9 −5.8 −14.0 −12.1 −10.0 —

M=Fe

HAM triplet −13.2 −13.6 −18.7 −19.7 −20.3 —

DMSD triplet −7.2 −4.8 −13.3 −16.1 −13.9 —

HAM quintet −12.5 −13.1 −18.2 −16.8 −16.9 —

DMSD quintet −7.2 −6.0 −13.9 −13.5 −11.9 —

M=Ni

HAM singlet −11.0 −13.0 −18.3 −16.1 −16.5 —

DMSD singlet −5.3 −4.4 −13.3 −11.6 −9.9 —

HAM triplet −15.0 −14.7 −20.6 −19.9 −21.5 —

DMSD triplet −12.0 −9.2 −17.9 −18.6 −16.8 —
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Fig. 3 Equilibrium structures
(bond lengths in Å) of the
products of the water
displacement reaction
[(NH3)3Zn-OH2]

2+ + MBG →
[(NH3)3Zn-MBG]2+ + H2O for
MBG = HAM, DMSD

Fig. 4 Equilibrium structures
(bond lengths in Å) of high spin
(13, 14) and low spin (15, 16)
states of the products of the
water displacement reaction
[(NH3)3Fe-OH2]

2+ + MBG →
[(NH3)3Fe-MBG]2+ + H2O for
MBG=HAM, DMSD
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the geometry optimization criterion used were those
corresponding to the Gaussian09 Opt=Tight option.
Natural bond orbital (NBO) [59] calculations were accom-
plished using the program NBO v3.1 [60] as implemented in
Gaussian 09.

Results and discussion

Models of the enzyme active site

Equilibrium structures of two models of Zn2+, Fe2+, and Ni2+

containing enzymes are presented in Figs. 1 and 2. In the first
model, the three amino acid residues are replaced by ammonia
molecules, while in the second one they are replaced by an
imidazole ring which mimics a histidine residue, which is a
common coordinating ligand in different metalloproteins.

Each of these two models has its own advantages and
drawbacks. The ammonia model allows one to use more
sophisticated quantum chemical methods, while the imidaz-
ole model is closer to the reproduction of steric hindrances
around the metal cation in real metalloproteases.

Ammonia complexes of zinc (1, Fig. 1) as well as the
high spin states of Fe2+ and Ni2+ complexes (2 and 3, Fig. 1)
have structures with symmetry close to Cs. In the Zn2+

complex the position of the water molecule depends on the
basis set, i.e., in structures optimized with the double-z set it
intersects the symmetry plane, while in those with
triple-z set it lies in the plane. The difference between
the in-plane and out-of-plane Zn-N bonds also depends
on the basis set employed: for cc-pVDZ two out-of-
plane Zn-N bonds are slightly longer than the in-plane
bond and for structures optimized with cc-pVTZ set the
order is inverse (Fig. 1).

Fig. 5 Equilibrium structures
(bond lengths in Å) of high spin
(17, 18) and low spin (19, 20)
states of the products of the
water displacement reaction
[(NH3)3Ni-OH2]

2+ + MBG →
[(NH3)3Ni-MBG]2+ + H2O for
MBG=HAM, DMSD
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In the optimized structures of the high spin Fe2+ complex
(2) no such difference was detected: in all structures the
water molecule intersects the symmetry plane and in-plane
Fe-N bonds are shorter.

The similar position of water was found in optimized struc-
tures of the Ni complex, although in this case the in-plane Ni-N
bonds are substantially longer that those out-of-plane. The
other feature which was not observed in Zn2+ and Fe2+ com-
plexes is that the water molecule substantially deviates from
the axis of the (NH3)3Ni

2+ moiety. This deviation may be
characterized as a difference between in-plane and out-of-
plane O-M-N bond angles (θ=δO-M-N1—δO-M-N2). This
value in the zinc complex (1, Fig. 1) is close to zero. In the high
spin state of the [(NH3)3Fe-OH2]

2+ complex its value is also
small, while for the nickel complex (3, Fig. 1) it reaches 47°.

Low spin states of the complexes [(NH3)3Fe-OH2]
2+ (4,

triplet) and [(NH3)3Ni
2+-OH2] (5, singlet) have a square

planar arrangement of ligands [36]. This difference in the
structure of low and high spin states of transition metal
complexes was rationalized by Dobbs et al. [36] as resulting
from the dramatic destabilization of the highest of the singly
occupied molecular orbitals (SOMOs) occurring when the
tetrahedron flattens. This orbital is not occupied in low spin
states of these complexes and, therefore, the square planar
structure is more stable. The NBO analyses of the high spin
states of iron (2) and nickel (3) complexes show that the
SOMOs responsible for their structures have different con-
figurations. In 2 it has a large contribution of dZ

2 electrons
of Fe, while the highest SOMO of 3 is populated by the Ni
dYZ electron. This difference in the symmetry of the SOMO
may lead to the different destabilization of this orbital on
going from the tetrahedral to the square planar configura-
tion. Due to this difference the triplet state of the [(NH3)3Ni-
OH2]

2+ complex has a significant deviation from the tetra-
hedral arrangement toward the square planar one. Note also
that the energy difference between the high and low spin
states of Ni complexes is substantially lower than that for Fe
complexes (Table 1).

Energy minima for low spin states of both Fe2+ (4) and
Ni2+ (5) complexes obtained at different levels of theory has
exact (B3LYP, MP2 for Fe2+) or approximate Cs symmetry.
However, the position of the water molecule differs in Fe2+

and Ni2+ complexes: in 4 it lies in the symmetry plane of the
molecule, while in 5 it intersects this plane.

Similar complexes were found for the model with imid-
azole ligands (6–10, Table 2). More bulky imidazole sub-
stituents and the minimization of the repulsion between
these rings result in the absence of even approximate sym-
metry elements in their equilibrium structures.

Computational problems connected with the substantially
larger number of atoms in the imidazole model allowed us to
use only DFT methods for their optimization. Nevertheless,
the comparison of equilibrium bond lengths (Fig. 1) indi-
cates that the M06L method gives results which are close to
those of MP2 which may be considered as the most reliable
quantum chemical method employed.

M-O bond distances in imidazole complexes are slightly
longer than analogous equilibrium bond lengths in ammonia
complexes. Note, also, that the energy difference between
the high and low spin Ni2+ complexes substantially dimin-
ishes on going to imidazole complexes (Table 1)

Complexes modeling the interaction between the active site
and the MBGs

Equilibrium structures of (NH3)3M
2+ complexes with N-

acetylhydroxylamine (CH3C(=O)NH(OH), henceforth
denoted as HAM), as a model of one of the strongest
MBG [36], and dimethylsilanediol ((CH3)2Si(OH)2, from
now on denoted as DMSD), as a model of the silanediol
based protease inhibitors, are depicted in Figs. 3–5 (11–20).
Further, the binding ability of these groups are estimated as
the Gibbs free energy of the [R3M-OH2]

2+ + MBG →
[R3M-MBG]2+ + H2O water replacement reactions. These
values, calculated with the different methods used, are
reported in Table 2.

Fig. 6 Equilibrium structures
(bond lengths in Å) of the
products of the water
displacement reaction
[(H4C3N2)3Zn-OH2]

2+ + MBG
→ [(H4C3N2)3Zn-MBG]2+ +
H2O for MBG = HAM, DMSD
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The complex formed by the (NH3)3Zn
2+ cation and the

HAM molecule demonstrates a feature revealed in previous
theoretical works and considered there as unexpected [36–46].
This is a monodentate chelation of the hydroxamic function-
ality through the formation of a single dative bond between
the carbonyl oxygen of the binding group and the metal of the
model system. This is in contrast to the bidentate chelation of
the inhibitor hydroxamates to the Zn2+ cation observed in the
X-ray studies of histone deacetylases [5, 7]. Our optimized
structure of the complex with HAM, [(NH3)3Zn-HAM]2+ (11,
Fig. 3), also demonstrate the monodentate binding: Zn…O=C
interatomic distance (MP2/cc-pVDZ) is in the 1.975 Å while
the Zn…OH distance is 3.006 Å (Fig. 3).

Monodentate binding is also observed in the DMSD
complex (12, Fig. 3). However, differences between shorter
and longer Zn…OH contacts are smaller. In the MP2 meth-
od these interatomic distances are 2.016 and 2.892 Å
correspondingly.

High spin states (quintet) of Fe2+ complexes have struc-
tures similar to those of zinc analogues (13 and 14, Fig. 4).
In the equilibrium structure of the HAM complex (13) the
Fe…O=C distance is also substantially shorter than the Fe…

OH distance. Nevertheless, in the DMSD complex (14) the
difference between two Fe…OH bond lengths is significant-
ly smaller than in the analogous complex with zinc (12,
Fig. 3). In the low spin state, i.e., triplet (15, Fig. 4) as in
the water complex (4, Fig. 1) a square planar arrangement of
ligands occurs with a shorter Fe…O=C contact. In contrast,
in the triplet state of the DMSD complex the planar arrange-
ment of the (NH3)3Fe

2+ moiety is seriously distorted due to
the fact that both Fe…OH bonds are almost equal (16,
Fig. 4).

In the Ni2+ complexes (17–20, Fig. 5) the tendency for
the growth of the bidentate character of chelation continues
for the high spin (triplet) states: the DMSD complex (18)
belongs to the Cs symmetry point group with equal Ni…OH
distances. Nonetheless, the low spin (singlet) states of both
HAM (19) and DMSD (20) complexes are distinctly mono-
dentate, in contrast to their iron analogs (15 and 16, Fig. 4).

Equilibrium structures of complexes modeled using the
Zn2+ cation and three imidazole rings, (C3N2H4)3Zn

2+, to
mimic the enzyme active site and both HAM (21) and
DMSD (22) as MBGs are depicted in Fig. 6. As can be
seen, they have the same pattern of metal binding that the

Fig. 7 Equilibrium structures
(bond lengths in Å) of high spin
(23, 24) and low spin (25, 26)
states of the products of the
water displacement reaction
[(H4C3N2)3Fe-OH2]

2+ + MBG
→ [(H4C3N2)3Fe-MBG]2+ +
H2O for MBG=HAM, DMSD
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abovementioned ammonia models (Fig. 3). However, the
difference between Zn…O distances slightly decrease.
This tendency cannot be traced in imidazole complexes of
Fe (23–26, Fig. 7) and Ni (27–30, Fig. 8). In general, M…O
bond distances in imidazole complexes are longer than in
the corresponding ammonia complexes.

Binding abilities of the MBGs

The slightly weaker bonding in the imidazole model manifests
in the lower energies calculated for the reaction [R3M-OH2]

2+ +
MBG → [R3M-MBG]2+ + H2O. This reaction is used as a
measure of the binding ability of different MBGs [36]. In the
analysis of the data we will focus on the comparison between
binding ability of one of the strongest binder, which is HAM,
and DMSD (Table 2). Gibbs free energies of the water replace-
ment reaction are used as characteristics of binding ability.

Three quantum chemical methods were used for the
estimation of these values: DFT functionals B3LYP and
M06L (with cc-pVDZ and cc-pVTZ basis sets), and, only
for ammonia complexes, ab initio MP2 method with the cc-
pVDZ basis set. Since MP2 method may be considered as

the most reliable we may judge the performance of DFT
methods as they imitate the MP2 results. From this point of
view M06L gives closer to MP2 energies (Table 2), while
B3LYP slightly underestimates binding energies.
Noticeably, DFT-D3 dispersion correction of the B3LYP/
cc-pVTZ Gibbs free energies (calculated for those systems
which size prevented running MP2 calculations) bring the
calculated values close to M06L/cc-pVTZ values (Table 2).

For M=Zn the silanediol group is only by 2 kcal mol−1 a
weaker binder than HAM. All methods (for the ammonia
and imidazole models) predict that both HAM and DMSD
exhibit stronger binding for the low spin state of the iron
cation (triplet) than for its high spin state (quintet). Note,
that the binding abilities estimated with MP2 and M06L
methods and the cc-pVDZ basis set for the silanediol group
are higher in the triplet state and nearly equal in the quintet
state when compared to values calculated for the HAM
complexes. In contrast to this, B3LYP predicts substantially
stronger binding of HAM in both triplet and quintet states.

For [(NH3)3Ni-MBG]2+ complexes, all methods predict
higher binding in the high spin (triplet) state. In this state,
DMSD appear to be a slightly better binder than HAM,

Fig. 8 Equilibrium structures
(bond lengths in Å) of high spin
(27, 28) and low spin (29, 30)
states of the products of the
water displacement reaction
[(H4C3N2)3Ni-OH2]

2+ + MBG
→ [(H4C3N2)3Ni-MBG]2+ +
H2O for MBG=HAM, DMSD
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according to MP2 and M06L results, while in the singlet
state HAM is preferred (Table 2).

In general, the order of binding ability for the silanediol
group, i.e., Fe2+(t) > Ni2+(t) > Fe2+(q) > Ni2+(s) > Zn2+ in
ammonia models, is close to that in HAM models, which
differs only in the relative values for Fe2+(q) and Ni2+(s).
DMSD shows the predominance of Fe2+(q), while for HAM
complexes these values are almost equal. However, in im-
idazole models the order is slightly different. Here the
binding ability of HAM and silanediol functionalities for
Ni2+(t) complexes is higher than those for Fe2+.

Intermediates in the water displacement reaction

In previous theoretical studies of the interaction between
metal complexes and inhibiting molecules the intermediate
in the reaction of the water displacement were not regarded.
Since transition metal cations may increase their coordina-
tion up to six ligands [61–64], one may conclude that the

complex formed by the attack of MBG on [R3M-OH2]
2+

should be an energy minimum rather than a transition state.
Indeed, complexes of HAM (31–32) and DMSD (33–34)
with the ammonia [(NH3)3Zn-OH2]

2+ model of a Zn-
enzyme active site (Fig. 9) are minima on their potential
energy surfaces. There are two modifications of these com-
plexes; one which is formed by the back-side attack of the
MBG on the [(NH3)3Zn-OH2]

2+ complex (31, 33), the other
by the front-side attack (32, 34). Note, that these two types
of complexes may be realized only for complexes with small
ammonia ligands. However, as discussed below, only one
type of complex exists in the models with more bulky
imidazole ligands.

The back-side complexes (31, 33 Fig. 9) originate from
the attack of the MBG on 1 (Fig. 1) from the side opposite to
a water molecule. It has a trigonal bipyramidal structure
with a pentacoordinated zinc atom. The coordination of both
HAM and DMSD is obviously monodentate (the second
Zn…O interatomic distance is over 3 Å). However, in the

Fig. 9 Equilibrium structures
(bond lengths in Å) of the
intermediates in the back-side
(31, 33) and front-side (32, 34)
attack of the MBG in the water
displacement reaction
[(NH3)3Zn-OH2]

2+ + MBG →
[(NH3)3Zn-MBG]2+ + H2O for
MBG=HAM, DMSD
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front-side HAM complex (32) Zn…O interatomic distances
are more equal and the structure looks like distorted octa-
hedron. Zn…O bonds become almost equivalent in the
DMSD complex (34). Despite the quite different structures
of back-side and front-side complexes, the difference in
energies between them is very small (Table 3).

Analogous complexes for the quintet state of iron (35–38,
Fig. 10) have noticeably higher bidentate character of Fe…O
bonding. Even for the HAM complexes the difference in Fe…O
bonds do not exceed 0.4 Å (MP2 results), while for the DMSD
complexes this difference is below 0.1 Å. All the structures have
the shape of a distorted octahedron, only in the case of back-side
complexes a water molecule and a short Fe…O bond to a MBG
group are in axial positions (35,37), while for front-side com-
plexes (36, 38) these axial positions are occupied by the water
molecule and one of the ammonia ligands. The energy differ-
ences between back-side and front-side complexes are also
small, but in contrast to the zinc analogues the front-side com-
plexes of Fe have slightly lower energies.

Equilibrium structures of the complexes of the triplet
state of [(NH3)3Fe-OH2]

2+ with HAM (39) and DMSD
(40) are depicted in Fig. 11. They have the form of a
distorted octahedron, similar to the analogous high spin
structures 35 and 37. Their complexation energies, as for
other low spin state complexes, are by ca. 10 kcal mol−1

higher (Table 3).
The triplet state of the [(NH3)3Ni-OH2]

2+ complex (41,
Fig. 12) formed by the back-side attack of HAM has a dis-
torted trigonal bipyramidal structure and is bound to HAM in a
monodentate fashion, similarly to the analogous complex of
zinc (31, Fig. 9). However, the second complex (42) has a
bidentate bonding to HAM oxygen atoms and an octahedral
structure. It is more stable than 41 by ca. 6 kcal mol−1 (Table 3).

Both complexes of DMSD (43 and 44) have octahedral
structure and bidentate bonding. Complex 44 is a nearly
perfect octahedron. Note, that due to rather short and almost
equal Ni-N and Ni…O distances, equilibrium bond lengths
optimized in M06L and MP2 methods are nearly equal. This

Table 3 Energies (kcal mol−1) of the formation of the complex between [R3M-OH2]
2+ and MBGs estimated by M06L and MP2 methods with cc-

pVDZ basis set

MBG (attack) nº in Figs. 9–13 Spin state M06L/cc-pVDZ MP2/cc-pVDZ

ΔEe ΔE0 ΔG298 ΔEe ΔE0 ΔG298

R=NH3 M=Zn

HAM (back) 31 singlet −47.2 −46.3 −33.3 −46.2 −45.2 −33.1

HAM (front) 32 singlet −46.3 −45.8 −33.0 −44.9 −44.0 −31.6

DMSD (back) 33 singlet −46.0 −44.5 −30.9 −43.8 −42.5 −29.5

DMSD (front) 34 singlet −45.8 −44.7 −30.4 −41.7 −41.4 −28.8

M=Fe

HAM (back) 35 quintet −51.7 −51.5 −40.6 −52.1 −51.4 −40.1

HAM (front) 36 quintet −54.0 −53.9 −42.5 −53.4 −52.7 −41.3

DMSD (back) 37 quintet −53.0 −52.8 −40.5

DMSD (front) 38 quintet −53.1 −52.8 −41.5

HAM 39 triplet −61.8 −61.3 −49.6 −62.4 −62.3 −50.8

DMSD 40 triplet −58.4 −58.2 −46.5

M=Ni

HAM (back) 41 triplet −56.3 −55.2 −43.0 −55.4 −54.1 −42.0

HAM (front) 42 triplet −62.5 −61.2 −47.9 −61.2 −60.1 −47.4

DMSD (back) 43 triplet −61.1 −60.0 −46.0 −58.6 −58.0 −51.2

DMSD (front) 44 triplet −62.1 −60.9 −47.3 −59.2 −58.4 −52.2

R=C3N2H4 M=Zn

HAM 45 singlet −34.0 −33.2 −21.1 — — —

DMSD 46 singlet −31.5 −30.9 −17.9 — — —

M=Fe

HAM 47 quintet −38.6 −37.5 −23.6 — — —

DMSD 48 quintet −38.1 −37.3 −23.5 — — —

M=Ni

HAM 49 triplet −46.9 −45.5 −31.6 — — —

DMSD 50 triplet −45.5 −44.3 −30.1 — — —
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complex also has the highest complexation energy among
all the intermediate complexes studied. All attempts to find a
penta- or hexacoordinated intermediates for the attack of
both HAM and DMSD molecules on the [(NH3)3Ni-OH2]

2+

singlet complex (similar to analogous complexes for the low
spin state of iron, structures 39 and 40) failed. Structures
converge to complexes 19 and 20 (Fig. 5) with a water
molecule hydrogen bonded to ammonia ligands.

In complexes with bulky imidazole ligands, the possibil-
ity of different ways of the attack is sterically restricted.
Therefore, only one type of intermediate complex was found
for tetrahedral models. All complexes may be described as a
distorted octahedron. In the zinc complex (45, Fig. 13) the
oxygen atoms of the water molecule and the carbonyl group
of HAM are in axial positions, while the nitrogen atoms of
the imidazole rings and the HAM hydroxyl oxygen may be

Fig. 10 Equilibrium structures
(bond lengths in Å) of high spin
states (quintet) of the inter-
mediates in the in the back-side
(35, 37) and front-side (36, 38)
attack of the MBG in the water
displacement reaction
[(NH3)3Fe-OH2]

2+ + MBG →
[(NH3)3Fe-MBG]2+ + H2O for
MBG=HAM, DMSD

Fig. 11 Equilibrium structures
(bond lengths in Å) of low spin
states (triplet) of the intermedi-
ates in the water displacement
reaction [(NH3)3Fe-OH2]

2+ +
MBG → [(NH3)3Fe-MBG]2+ +
H2O for MBG=HAM, DMSD
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assigned to equatorial positions despite the rather large Zn…
O distance of the latter. In the octahedral complex with the
silanediol group (46) the bonding is completely bidentate.

The bidentate character of bonding of HAM is increasing
in Fe (47, Fig. 14) and Ni (49, Fig. 14) complexes. These
complexes as well as the analogous complexes with DMSD

(48, 50) have octahedral structure. Formation energies of
imidazole complexes are lower than corresponding ammo-
nia complexes, but the difference between energies of com-
plexes with HAM and DMSD remains unchanged with
those for DMSD being a few kcal mol−1 lower than those
for HAM complexes.

Fig. 12 Equilibrium structures
(bond lengths in Å) of high spin
states (triplet) of the intermedi-
ates in the in the back-side (41,
43) and front-side (42, 44) at-
tack of the MBG in the water
displacement reaction
[(NH3)3Ni-OH2]

2+ + MBG →
[(NH3)3Ni-MBG]2+ + H2O for
MBG=HAM, DMSD

Fig. 13 Equilibrium structures (bond lengths in Å) of the intermediates in the water displacement reaction [(H4C3N2)3Zn-OH2]
2+ + MBG →

[(H4C3N2)3Zn-MBG]2+ + H2O for MBG=HAM, DMSD
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Conclusions

1. Enzymes are modeled by the tridentate complexes of
Zn2+, Fe2+ and Ni2+ metal dications with an exchange-
able water molecule in which amino acid residues are
mimicked by (i) ammonia and (ii) imidazole ligands.
The inhibiting activity of the silanediol functionality is
compared to that of hydroxamic acids (HAM) by the
calculation of the energies of the water displacement
reaction by metal binding groups [R3M-OH2]

2+ +
MBG → [R3M-MBG]2+ + H2O, where R=NH3 and
C3N2H4, M=Zn, Fe, Ni.

2. The equilibrium geometries of the [R3Zn-OH2]
2+ com-

plexes and the high spin states of the iron and nickel
analogous are characterized by their distorted tetrahe-
dral structure in which the water molecule lies on the
axis of the R3M

2+ group for R=Zn and Fe, but sub-
stantially deviates from this axis for R=Ni. Low spin
states of iron and nickel complexes have a square
planar arrangement of ligands.

3. Distances between the metal atom and oxygen atoms
of HAM as well as of silanediol are quite different for
[R3Zn-HAM]2+ complexes (monodentate binding) but

become more equal on going to the high spin states of
iron and nickel (bidentate binding).

4. The comparison of the different quantum chemical
methods employed for the prediction of the water
displacement reaction energies demonstrate that
the DFT M06L method gives closest results to
those of MP2, than the widespread B3LYP
functional.

5. The binding energy of DMSD is only a few kcal mol−1

inferior to that of HAM for Zn2+ and Fe2+ and is even
slightly higher for the triplet state of (NH3)3Ni

2+ as
revealed by MP2 and M06L methods.

6. All methods predict that both HAM and DMSD have
stronger binding for the iron cation in the low spin
state than for the high spin iron, although for nickel the
inverse order of binding may be observed.

7. For bothMBGs studied in the ammoniamodel the binding
ability is nearly the same, i.e., Fe2+(t) > Ni2+(t) > Fe2+(q) >
Ni2+(s) > Zn2+. For the imidazole model the order is
slightly different, i.e., Ni2+(t) > Fe2+(t) > Fe2+(q) > Ni2+

(s) ≥ Zn2+.
8. Two types of intermediate complexes in the reaction of

the water displacement from the [(NH3)3M-OH2]
2+

Fig. 14 Equilibrium structures (bond lengths in Å) of the high spin states of the intermediates in the water displacement reaction [(H4C3N2)3M-
OH2]

2+ + MBG → [(H4C3N2)3M-MBG]2+ + H2O for M=Fe, Ni and MBG=HAM, DMSD
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model of metalloprotease, which differ by the direction
of the attack of MBG, were found. Complexes formed
by the back-side attack of HAM (in the direction oppo-
site to a water molecule) on the models of zinc protease
and high spin states of iron and nickel models are
trigonal bipyramidal and have monodentate bonding to
the MBG, while for those originating from the
front-side attack the bidentate character of bonding
increases and complexes have a structure of a distorted
octahedron.

9. All intermediate complexes with the silanediol group,
exception made of the back-side complex for zinc, are
hexacoordinated with a bidentate bonding to the oxy-
gen atoms of the silanediol group.

10. All intermediate complexes with imidazole ligands
have octahedral structure with bidentate bonding of
MBGs.

11. Complexation energies of these complexes are sub-
stantially lower that corresponding complexes with
ammonia ligands but the tendencies are similar: ener-
gies are close for HAM and DMSD and they decrease
on going from nickel to zinc.
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